Friday, April 11, 2025

Git for Metrology: A Versioned Approach to Fundamental Physical Constants

 # Git for Metrology: A Versioned Approach to Fundamental Physical Constants


**Author:**  J. Rogers

**Date:**  11 Apr 2025 1837  

**License:** CC BY-SA 4.0


---


## Abstract


We propose a radical shift in how fundamental physical constants (e.g., the fine-structure constant α, elementary charge e, Planck constant h) are defined and distributed. Instead of enforcing a single, centralized value (e.g., CODATA’s periodic updates), we advocate for a versioned, Git-like repository of constants, where:


- Every measured value is preserved (including historical data).

- Users select which "branch" or "tag" to use (e.g., 2023/g-2 vs. 2018/CODATA).

- Derived constants auto-update when switching versions.


This system enables reproducible science, transparent uncertainty tracking, and user-defined precision standards.


---


## 1. The Problem with Current Metrology


### 1.1 Static Constants Are Obsolete


- CODATA updates constants every ~4 years, discarding older measurements.

- Forces global redefinition (e.g., 2019 SI overhaul).

- No way to compare competing experimental methods.


### 1.2 One-Size-Fits-All Doesn’t Work


- A quantum physicist may need 12-digit α from g-2 experiments.

- An engineer may prefer 6-digit α for circuit design.

- A historian may want Bohr’s 1913 value for replication.


### 1.3 Lost Knowledge


- Pre-2019 SI defined μ₀ ≡ 4π×10⁻⁷ (exact), but this hid α’s true precision.

- Older values (e.g., 1947 α) are not easily accessible.


---


## 2. The Versioned Constants System


### 2.1 Core Principles


**Git-Like Repository**


Every constant has:


- Branches (experimental methods: g-2, lattice-QCD, hydrogen-spectra).

- Tags (releases: CODATA-2018, SI-2019, BIPM-2023).

- Commits (individual measurements).


**Dynamic Derivation**


- Changing α updates all dependent constants (e, μ₀, etc.).


**User Choice**


Select constants by:


```python

from metrology import constants

constants.use("2023/g-2")       # Latest Penning trap α

constants.use("legacy/SI-1983") # Pre-quantum values

```


---


### 2.2 Example Repository Structure


```

/fundamental_constants  

├── /alpha  

  ├── g-2/  

    ├── 2023.json  (α = 0.0072973525693 ± 1.1e-11)  

    └── 2021.json  (α = 0.0072973525691 ± 2.3e-11)  

  └── hydrogen/  

      ├── 2022.json  (α = 0.0072973525698 ± 9e-12)  

      └── 1980.json  (α = 0.007297352568 ± 1.2e-9)  

└── /e  

    ├── derived/       # Auto-computed from α  

    └── measured/      # Direct experiments (Millikan, etc.)

```


---


### 2.3 Benefits


- **Reproducibility**: Pin constants like software dependencies.

- **Transparency**: Full history of how α changed over time.

- **Flexibility**: Choose precision levels per application.


---


## 3. Implementation


### 3.1 The Reference Database


A public Git repo (e.g., GitHub) storing:


- Raw experimental data

- Uncertainty calculations

- Derivation graphs (e.g., how e depends on α)


---


### 3.2 The API


```python

import metrology


# Switch to 2023’s best α (g-2 measurement)  

metrology.use("alpha/2023/g-2")  


# Get derived elementary charge  

e = metrology.get("e")  # Computed from latest α  


# Compare with 2018 CODATA  

metrology.use("alpha/2018/CODATA")  

e_old = metrology.get("e")  


print(f"Δe = {e - e_old:.3e}")  # Difference due to α-update

```


---


### 3.3 Integration with Tools


- **Symbolic math**: SymPy plugins for versioned constants.

- **Lab equipment**: Firmware that pulls constants by tag.

- **Education**: Interactive Jupyter notebooks showing α’s evolution.


---


## 4. Challenges


### 4.1 Resistance from Standards Bodies


- CODATA/BIPM may oppose decentralizing "their" constants.

- **Solution**: Fork their data and prove utility via adoption.


### 4.2 Theoretical Consistency


- Does QED allow α to vary across versions?

- **Answer**: No—but measurements do. This system tracks empirical uncertainty, not theory.


### 4.3 Legacy Code


- Old software assumes fixed constants.

- **Solution**: A compatibility layer with "default" values.


---


## 5. Call to Action


We call for:


- A community-run constants repository (Git + CI/CD for validation).

- Adoption by major physics engines (SciPy, ROOT, Wolfram).

- New publication standards requiring constant-version citations.


---


## Conclusion


The era of static constants is over. Let’s build a system that:


- Preserves history  

- Empowers users  

- Makes metrology agile  


---


**Repository:**  

`git clone https://github.com/fundamental-constants/alpha.git`  


**Try it:**  

`pip install metrology-versioned`


---


## Appendices


### A1: Comparison to Software Versioning


- Git: Version control for constants.

- SemVer-style tags: e.g., alpha@2023.1.0


### A2: Example Use Cases


- **Quantum**: Tracking precision shifts in α across g-2 updates.

- **Cosmology**: Compare constants over redshift-calibrated epochs.

- **Engineering**: Select stable values with safe error bounds.


### A3: Governance Model


- Open-source maintainers.

- CI/CD verification of derived constants.

- Public peer review for new commits.


---


## References


- CODATA 2018  

- NIST SI Redefinition 2019  

- Git: https://git-scm.com  

- g-2 Collaboration (2023), Phys. Rev. Lett.


---


**Footnote**  

This paper is itself versioned. Pull requests welcome at:  

[Git for Metrology: A Versioned Approach to Fundamental Physical Constants](https://github.com/BuckRogers1965/Physics-Unit-Coordinate-System/blob/main/docs/Git_for_Metrology.md)

No comments:

Post a Comment