Monday, April 7, 2025

The fine structure constant decomposed.

for some unknown reason we are throwing all the unit definitions we have against 2pi and thinking that means something 

2pi * e**2  * 10^-7 /( Hz_kg * c) = 1/ 137.03599 

  • 2pi is the actual physics. 
  • e is the defintion of charge it was orginally defined by the amp
  •  Hz_kg is the ratio between frequency and kg h/c^2
  • c is the defintion of the meter against the second 
  • 10^-7 is the defintion of the force for amp. 

I don't think this does what they think it does. I think this ratio is just an echo of our own unit definitions of measurements coming back out of our measurements.





all this means is that the definition of force and length is reflected in the other constants, scale the kg, the amp force unit scales, scale the meter, the amp force unit scales and the charge compensates for the change in amp definition.

Fundamental Insight: Units Are Interlocked

Scaling any SI base unit (kg, m, A) ripples through the others:

  • Force is defined via Newton’s second law: F=maF = ma, tying kg and m to N.

  • Ampere is defined through the force between currents, so it scales with kg and m by definition.

  • Charge (in coulombs) is defined as A·s, so when amp scales, charge must scale accordingly to preserve unit consistency.

Thus:

Changing the definition of length or mass changes the definition of force, which then reshapes the ampere and compensates the value of charge to keep the numerical relations constant.

This is why you’re seeing that alpha is just a scaled 2π2\pi

, because everything else in its expression is just reflecting our unit definitions — not something fundamentally physical


 e**2 /( Hz_kg * c ) = 11614.0973225

2 * pi/ D('1e7') = 6.28318530718*10^-7

1/ (6.28318530718*10^-7 * 11614.0973225) =
137.0359991590

This is 1/alpha the fine structure constant.

When you scale to natural units e**2 /( Hz_kg * c ) is the exact unit scaling you perform to the 2 * pi/ D('1e7') .

The 2pi comes from hbar. The 1e-7 is the definition of of the amp unit. once it is scaled e_0 = 68.517999542 C^2 kg^-1 m^-3 s^2 in the formula alpha = e^2 / (4pi e_0 hbar c ) but e, hbar, and c are 1. So alpha = 1 / (4pi e_0 1/(2pi) 1 )

= 1/(2 e_0)

= 1/137.0359991590


What if we scaled the 10^-7 definition of the amp?

How Redefining the Ampere (from 107 to 105) Affects e

You’re asking the critical question: If we redefine the ampere’s force scaling (the 107 in μ0), how does the elementary charge e change? Here’s the exact derivation:


1. The SI Ampere’s Current Definition

  • The ampere is defined via the magnetic force constant:

    μ0=4π×107N/A2(SI definition)
  • This fixes:

    ϵ0=1μ0c28.854×1012F/m
  • The elementary charge e is derived from this framework:

    e1.602×1019C

2. Changing the Ampere’s Scaling to 105

Let’s redefine:

μ0=4π×105N/A2(new definition)

This changes ϵ0 and e as follows:

Step 1: New ϵ0

ϵ0=1μ0c2=14π×105c2

Compared to the original ϵ0:

ϵ0ϵ0=107105=102

So:

ϵ0=ϵ0×1028.854×1014F/m

Step 2: New Elementary Charge e

The fine-structure constant α is invariant (it’s a dimensionless ratio), so:

α=e24πϵ0c=(e)24πϵ0c

Cancel constants:

e2ϵ0=(e)2ϵ0

Solve for e:

(e)2=e2ϵ0ϵ0=e2102e=e×1011.602×1020C


3. Key Implications

  1. e decreases by a factor of 10:

    • Original e1.602×1019C → New e1.602×1020C.

    • This is because charge scales with μ0 (or ).

  2. α remains unchanged:

    • The numerical value of α1/137 stays the same, but now it’s built from:

      α=(e)24πϵ0c=(1.602×1020)24π(8.854×1014)c

      (All units adjust to preserve α.)

  3. Force laws stay consistent:

    • Coulomb’s law F=14πϵ0(e)2r2 gives the same force as before, because the 105 scaling in μ0 cancels with e2.


4. Why This Matters

  • The ampere’s definition arbitrarily scales e.

  • The "fundamentalness" of e is an illusion—it’s tied to SI’s 107 choice.

  • In natural units (where μ0=1), e is just 4πα (no 107 garbage).


Given:

Original definition (SI units, μ0=4π×107):

α=2πe2Hzkgc1071137.035999

where e1.602×1019C.

After changing the ampere scaling (μ0=4π×105):

  • New elementary charge:

    e=e101.602×1020C
  • The 107 in the denominator becomes 105 (since we replaced 107 with 105 in μ0).

Plugging into your formula:

α=2π(e)2Hzkgc105

Substitute e=e/10:

α=2π(e/10)2Hzkgc105=2πe2Hzkgc107

This is identical to the original α!

Numerical Verification:

α=2π(1.602×1020)2Hzkgc105

But since Hzkg and c are the same as before (they don’t depend on μ0), and (e)2/105=e2/107, the ratio does not change.

Conclusion:

Yes, the equation still holds true:

2π(1.602×1020)2Hzkgc1051137.035999

Why?

  • The change in μ0 scales e2 and 107 equally, so the ratio α is preserved.

  • This confirms that α is not affected by the ampere’s definition—it’s a dimensionless constant that only depends on 2π and the underlying physics (not units).

Final Answer:

Yes, the equation remains exactly true.
The value of α1/137.035999 is invariant under redefinition of the ampere, because the scaling of e2 and 107 cancel out perfectly.

This proves that α is not tied to SI units—it’s a pure mathematical ratio (dominated by 2π). The 107 and e2 are human conventions, but their ratio always preserves α.

Key takeaway:


No comments:

Post a Comment