Sunday, April 6, 2025

Double checking unit scaling of k_e and G constants for the charge and gravity law proportions.

I figured out that I could double check my unit scaling of the k_e and G constants by scaling to natural units by their unit definition.  But I was not sure if the unit scaling was correct because they have been assigned extra units to make their respective proportions dimensionless ratios.  So I am also cacluating the result with the current law formulas with what a proportion of 1 would be in natural units.  Then I am unit scaling the newton from these natural units and using that Newton value to scale the natural unit scaling of the constant to their SI value and they are matching to 9 digits. :D

G          gravitational_constant_G            6.6743e-11                 1.82624163e-86 m^3 kg^-1 s^-2

k_e        coulombs_constant_k_e               8987551787.0               0.001161409732 kg^1 m^3 s^-2 C^-2


These are how I am scaling the base units of measure for this natural unit system that is encoded in c, h, and k.

--- Scaling Factors Used ---

m          2.99792458000000000000e+08   this is c

kg         7.37249732381270843547e-51   this is h/c

K          4.79924307336622100516e-11   this is h/k

s          1.00000000000000000000e+00   time stays the same

Hz         1.00000000000000000000e+00

mol        1.66053906717384659585e-24  

C          1.60217663399999989376e-19


This results in natural units just by scaling the base units.

And yes, the 2.210219e-42  value looks familiar, that is h/c.  The fact that this is unit scaling from natural units force to SI Newton unit gives you a good clue about what h is doing in SI units.

  

Constant                       Original Value            Rescaled Value           

--------------------------------------------------------------------------------

c          speed_of_light_c                    299792458                             1.0 m^1 s^-1

                 Hz         1 Hz                                1                                     1.0 Hz^1

h          planck_constant_h                   6.62607015e-34                      1.0 kg^1 m^2 s^-1

k          boltzmann_constant_k                1.380649e-23                       1.0 kg^1 m^2 s^-2 K^-1

G          gravitational_constant_G            6.6743e-11               1.82624163e-86 m^3 kg^-1 s^-2

k_e        coulombs_constant_k_e               8987551787.0        0.001161409732 kg^1 m^3 s^-2 C^-2

?          Wien wl d law                           0.002897771955               0.2014052353 m^1 K^1

?          neutron Compton wavelength          1.31959090581e-15         4.401681465e-24 m^1

e          elementary_charge_e                 1.602176634e-19                       1.0 C^1

Na         avogadro_constant_Na                6.02214076e+23                        1.0 mol^-1

me         electron_mass_me                    9.1093837015e-31          1.235589964e+20 kg^1

mp         proton_mass_mp                      1.67262192369e-27         2.268731815e+23 kg^1

mn         neutron_mass_mn                     1.67492749804e-27         2.271859079e+23 kg^1

?          Angstrom star                              1.00001495e-10             3.33569082e-19 m^1

ε₀         vacuum_permittivity_epsilon0        8.8541878128e-12              68.51799954 C^2 kg^-1 m^-3 s^2

μ₀         vacuum_permeability_mu0             1.25663706212e-06           0.01459470514 kg^1 m^1 s^-2 C^-2

Rydberg    rydberg_constant_Rydberg            10973731.56816             3.28984196e+15 m^-1

a₀         bohr_radius_a0                           5.29177210903e-11         1.765145176e-19 m^1

E_h        hartree_energy_Eh                    4.359744722071e-18         6.57968392e+15 kg^1 m^2 s^-2

r_e        electron_radius_re                      2.8179403262e-15          9.399637152e-24 m^1

R_K        klitzing_constant_Rk                25812.80745                  0.9999999996 kg^1 m^2 s^-3 C^-2

Wb/K       weber_per_kelvin                     1.0                           11604.51812 kg^1 m^2 s^-1 C^-1 K^-1

F          faraday_constant_F                          96485.33212                           1.0 mol^-1 C^1

σ          stefan_boltzmann_constant_sigma     5.670374419e-08               40.80262464 kg^1 s^-3 K^-4

Φ₀         magnetic_flux_quantum_Phi0          2.067833848e-15              0.4999999999 kg^1 m^2 s^-1 C^-1

K_J        josephson_constant_KJ               483597848400000.0                     2.0 kg^-1 m^-2 s^1 C^1

G₀         conductance_quantum_G0              7.748091729e-05                       2.0 kg^-1 m^-2 s^1 C^2

R          molar_gas_constant_R                8.314462618                           1.0 kg^1 m^2 s^-2 mol^-1 K^-1

u          atomic_mass_unit_u                  1.6605390666e-27          2.252342719e+23 kg^1

μ_B        bohr_magneton_muB                   9.2740100783e-24          6.440443341e-22 m^2 s^-1 C^1

μ_N        nuclear_magneton_muN                5.0507837461e-27          3.507575069e-25 m^2 s^-1 C^1

λ_e,C      electron_compton_wavelength_lambda_eC 2.42631023867e-12         8.093299794e-21 m^1

m_P        planck_mass_mP                      2.176434e-08              2.952098732e+42 kg^1

l_P        planck_length_lP                    1.616255e-35              5.391246367e-44 m^1

t_P        planck_time_tP                      5.391247e-44                 5.391247e-44 s^1

T_P        planck_temperature_TP               1.416784e+32              2.952098859e+42 K^1

g₀         standard_gravity_g0                 9.80665                   3.271146334e-08 m^1 s^-2





--- Calculating Electrostatic Force Directly in SI Units ---

Coulomb's Constant (k_e_si):    8.987552e+09 N m^2 / C^2

Elementary Charge (e_si):     1.602177e-19 C

Speed of Light (c_si):          2.997925e+08 m/s

Planck Constant (h_si):         6.626070e-34 kg m^2 / s

------------------------------------------------------------

Scenario: Two charges equal to e_SI, separated by 1 light-second

Charge 1 & 2 (q_natural_in_si): 1.602177e-19 C

Distance (r_natural_in_si):   2.997925e+08 m (1 light-second)

------------------------------------------------------------

Force calculated directly in SI:  2.566970e-45 N

------------------------------------------------------------

--- Comparison with Natural Unit Calculation ---

Value of k_e in Natural Units (k_e'): 0.0011614097 (in Natural Force Units)

Value of 1 Natural Force Unit in Newtons:

  kg_nat*m_nat/s_nat^2 =         2.210219e-42 N / (Natural Force Unit)


Expected SI Force = k_e' * (Value of 1 Natural Force Unit in N)

Calculated SI Force from k_e':    2.566970e-45 N

------------------------------------------------------------

Result: The direct SI calculation MATCHES the calculation using k_e'

        and the force unit conversion factor.




$ cat  ke_calc_nu01.py 


import math


# --- SI Constants ---

k_e_si = 8.9875517873681764e9 # N m^2 / C^2 (Defined as 1/(4*pi*epsilon0) where epsilon0 is derived from c and mu0)

# Or more fundamentally: k_e = (mu0 * c^2) / (4 * pi)

# mu0_si = 4 * math.pi * 1e-7 # N/A^2 = kg*m/(s^2*A^2) = kg*m/C^2 (Exact by definition before 2019, now derived)

c_si = 299792458.0          # m/s (Exact by definition)

h_si = 6.62607015e-34        # J s = kg m^2 / s (Exact by definition)

e_si = 1.602176634e-19       # C (Exact by definition)


# --- Derived SI values based on your natural unit setup ---

# Charge corresponding to 1 natural charge unit (e_si)

q_natural_in_si = e_si


# Distance corresponding to 1 natural length unit (1 light-second)

r_natural_in_si = c_si * 1.0 # 1 light-second


# --- Calculate Force directly in SI using Coulomb's Law ---

q1_si = q_natural_in_si

q2_si = q_natural_in_si

r_si = r_natural_in_si


force_direct_si_coulomb = k_e_si * q1_si * q2_si / (r_si**2)


# --- Calculate Scaling Factor for Force (same as before) ---

# Value of 1 Natural Unit in SI Units

natural_m_in_si = c_si

natural_kg_in_si = h_si / (c_si**2)

natural_s_in_si = 1.0


# Value of 1 Natural Force Unit in Newtons

natural_force_in_newtons = natural_kg_in_si * natural_m_in_si / (natural_s_in_si**2)


# --- Value of k_e in the Natural Units (k_e') (from your previous script execution) ---

# k_e_natural = 0.001161409732 # kg^1 m^3 s^-2 C^-2 <-- Wait, these units are wrong for k_e'

# k_e' should represent the force (in natural units) between unit natural charges at unit natural distance.

# Let's use the value your script calculated for k_e:

k_e_natural = 0.001161409732 # This should be the dimensionless force factor in natural units.


# --- Calculate expected SI force from Natural k_e ---

# k_e_natural represents the force between unit natural charges at unit natural distance,

# expressed in natural force units.

# To get the force in SI units (Newtons), multiply this value by the

# value of 1 natural force unit in Newtons.

force_from_natural_ke = k_e_natural * natural_force_in_newtons


# --- Print Results ---

print("--- Calculating Electrostatic Force Directly in SI Units ---")

print(f"Coulomb's Constant (k_e_si):    {k_e_si:.6e} N m^2 / C^2")

print(f"Elementary Charge (e_si):     {e_si:.6e} C")

print(f"Speed of Light (c_si):          {c_si:.6e} m/s")

print(f"Planck Constant (h_si):         {h_si:.6e} kg m^2 / s")

print("-" * 60)

print("Scenario: Two charges equal to e_SI, separated by 1 light-second")

print(f"Charge 1 & 2 (q_natural_in_si): {q_natural_in_si:.6e} C")

print(f"Distance (r_natural_in_si):   {r_natural_in_si:.6e} m (1 light-second)")

print("-" * 60)

print(f"Force calculated directly in SI:  {force_direct_si_coulomb:.6e} N")

print("-" * 60)

print("--- Comparison with Natural Unit Calculation ---")

print(f"Value of k_e in Natural Units (k_e'): {k_e_natural:.10f} (in Natural Force Units)") # Used f-format for precision

print("Value of 1 Natural Force Unit in Newtons:")

print(f"  kg_nat*m_nat/s_nat^2 =         {natural_force_in_newtons:.6e} N / (Natural Force Unit)")

print("\nExpected SI Force = k_e' * (Value of 1 Natural Force Unit in N)")

print(f"Calculated SI Force from k_e':    {force_from_natural_ke:.6e} N")

print("-" * 60)

if math.isclose(force_direct_si_coulomb, force_from_natural_ke, rel_tol=1e-9):

    print("Result: The direct SI calculation MATCHES the calculation using k_e'")

    print("        and the force unit conversion factor.")

else:

    print("Result: There is a discrepancy between the two methods.")

    print(f"        Difference: {abs(force_direct_si_coulomb - force_from_natural_ke):.2e} N")


--- Calculating Gravitational Force Directly in SI Units ---

Gravitational Constant (G_si):    6.674300e-11 N m^2 / kg^2

Speed of Light (c_si):          2.997925e+08 m/s

Planck Constant (h_si):         6.626070e-34 kg m^2 / s

------------------------------------------------------------

Scenario: Two masses equal to (h/c^2)_SI, separated by 1 light-second

Mass 1 & 2 (m_natural_in_si):   7.372497e-51 kg

Distance (r_natural_in_si):     2.997925e+08 m (1 light-second)

------------------------------------------------------------

Force calculated directly in SI:  4.036394e-128 N

------------------------------------------------------------

--- Comparison with Natural Unit Calculation ---

Value of G in Natural Units (G'): 1.826242e-86 (in Natural Force Units)

Value of 1 Natural Force Unit in Newtons:

  kg_nat*m_nat/s_nat^2 =         2.210219e-42 N / (Natural Force Unit)


Expected SI Force = G' * (Value of 1 Natural Force Unit in N)

Calculated SI Force from G':      4.036394e-128 N

------------------------------------------------------------

Result: The direct SI calculation MATCHES the calculation using G'

        and the force unit conversion factor.




$ cat  g_calc_nu01.py 


import math


# --- SI Constants ---

G_si = 6.67430e-11  # N m^2 / kg^2 (CODATA 2018)

c_si = 299792458.0   # m/s (Exact by definition)

h_si = 6.62607015e-34 # J s = kg m^2 / s (Exact by definition)


# --- Derived SI values based on your natural unit setup ---

# Mass corresponding to 1 natural mass unit (h/c^2)

m_natural_in_si = h_si / (c_si**2)


# Distance corresponding to 1 natural length unit (1 light-second)

r_natural_in_si = c_si * 1.0 # 1 light-second


# --- Calculate Force directly in SI ---

m1_si = m_natural_in_si

m2_si = m_natural_in_si

r_si = r_natural_in_si


force_direct_si = G_si * m1_si * m2_si / (r_si**2)


# --- Calculate Scaling Factor for Force ---

# These are the factors that define 1 natural unit in terms of SI units

# (Value of 1 Natural Unit in SI Units)

# This is the inverse of the 'rescale_factors' dictionary values used before,

# which represented the value to divide SI by.

natural_m_in_si = c_si                        # 1 Natural length unit = c meters

natural_kg_in_si = h_si / (c_si**2)           # 1 Natural mass unit = h/c^2 kg

natural_s_in_si = 1.0                         # 1 Natural time unit = 1 s


# Force units: kg * m / s^2

# Calculate the value of 1 Natural Force Unit in Newtons

natural_force_in_newtons = natural_kg_in_si * natural_m_in_si / (natural_s_in_si**2)


# --- Value of G in the Natural Units (G') (from previous script execution) ---

G_natural = 1.82624162981050139182530428342e-86 # This is dimensionless IF using F=ma directly


# --- Calculate expected SI force from Natural G ---

# G_natural represents the force between unit natural masses at unit natural distance,

# expressed in natural force units.

# To get the force in SI units (Newtons), multiply this value by the

# value of 1 natural force unit in Newtons.

force_from_natural_G = G_natural * natural_force_in_newtons


# --- Print Results ---

print("--- Calculating Gravitational Force Directly in SI Units ---")

print(f"Gravitational Constant (G_si):    {G_si:.6e} N m^2 / kg^2")

print(f"Speed of Light (c_si):          {c_si:.6e} m/s")

print(f"Planck Constant (h_si):         {h_si:.6e} kg m^2 / s")

print("-" * 60)

print("Scenario: Two masses equal to (h/c^2)_SI, separated by 1 light-second")

print(f"Mass 1 & 2 (m_natural_in_si):   {m_natural_in_si:.6e} kg")

print(f"Distance (r_natural_in_si):     {r_natural_in_si:.6e} m (1 light-second)")

print("-" * 60)

print(f"Force calculated directly in SI:  {force_direct_si:.6e} N")

print("-" * 60)

print("--- Comparison with Natural Unit Calculation ---")

print(f"Value of G in Natural Units (G'): {G_natural:.6e} (in Natural Force Units)")

print("Value of 1 Natural Force Unit in Newtons:")

print(f"  kg_nat*m_nat/s_nat^2 =         {natural_force_in_newtons:.6e} N / (Natural Force Unit)")

print("\nExpected SI Force = G' * (Value of 1 Natural Force Unit in N)")

print(f"Calculated SI Force from G':      {force_from_natural_G:.6e} N")

print("-" * 60)

if math.isclose(force_direct_si, force_from_natural_G, rel_tol=1e-9):

    print("Result: The direct SI calculation MATCHES the calculation using G'")

    print("        and the force unit conversion factor.")

else:

    print("Result: There is a discrepancy between the two methods.")

    print(f"        Difference: {abs(force_direct_si - force_from_natural_G):.2e} N")

No comments:

Post a Comment