Mastodon Politics, Power, and Science: Orbital Period in PUCS definition of Planck Unit Scaling

Wednesday, May 14, 2025

Orbital Period in PUCS definition of Planck Unit Scaling

How orbital period (and other formulas) become transparent, with all constants and SI baggage removed, leaving only the true natural ratios.

The Planck Unit Definitions (PUCS Framework)

Let’s recap the process:

1. Start with SI Gravity Constant

GSI=6.6743×1011 m3kg1s2

2. Remove SI “kg” and “m” via Scaling Factors

  • Mass-frequency ratio:
    Hzkg=h/c2

  • Naturalized G:

    Gn=GSIHzkgc3

    This gives Gn in units of s2:
    Gn=1.82624162981×1086 s2

3. Isolate Planck Time

  • Planck time (non-reduced):

    tPh=Gn=1.35138507828×1043 s

4. Define Other Planck Units via Planck Time

  • Planck length:
    lPh=ctPh=4.05135054323×1035 m

  • Planck mass:
    mPh=Hzkg/tPh=5.45551186133×108 kg

  • Planck temperature:
    TPh=HzK/tPh=3.55135123991×1032 K

These are not mysterious boundaries, but the unit harmonizers: the scales where our SI units match the universe’s natural ratios.

Orbital Period in PUCS Notation

1. Start with the Standard SI Formula

TSI=2Ï€r3GSIM

2. Express in Planck Units

  • r=rplancklPh

  • M=mplanckmPh

Plug these into the formula:

TSI=2Ï€(rplancklPh)3GSI(mplanckmPh)

3. Substitute Planck Unit Definitions

Recall:

  • lPh=ctPh

  • GSI=tPh2c3/Hzkg

  • mPh=Hzkg/tPh


Plug these in:

TSI=2Ï€rplanck3(ctPh)3(tPh2c3/Hzkg)(mplanck(Hzkg/tPh))

4. Simplify

Numerator:

  • rplanck3c3tPh3


Denominator:

  • (tPh2c3/Hzkg)mplanck(Hzkg/tPh)

  • =tPh2c3mplanckHzkg/(HzkgtPh)

  • =tPh2c3mplanck/tPh

  • =tPhc3mplanck

So,

TSI=2Ï€rplanck3c3tPh3tPhc3mplanck
  • c3 cancels.

  • tPh3/tPh=tPh2

TSI=2Ï€rplanck3tPh2mplanckTSI=2Ï€tPhrplanck3mplanck

Final Result (PUCS Notation)

TSI=2Ï€tPhrplanck3mplanck
  • rplanck = radius in Planck units = r/lPh

  • mplanck = mass in Planck units = M/mPh

  • tPh = the Planck time scaling factor

Summary Table

SymbolMeaningHow to Compute
rplanckPhysical radius in Planck unitsr/lPh
mplanckPhysical mass in Planck unitsM/mPh
tPhPlanck timeGn
lPhPlanck length ctPh
mPhPlanck mass Hzkg/tPh


Interpretation

  • All SI scaling is gone: Only the natural ratios rPh and mPh remain.

  • tPh is the only “unit” left: It simply converts from Planck time to seconds.

  • No “mystery” or “breakdown” at the Planck scale: It’s just the scale where our units harmonize.

  • mplanck is the dimensionless mass in Planck units (not the scaling factor).

  • mPh is the Planck mass scaling factor (in kg).

Summary Table

UnitThe Definition (PUCS)SI Value
Planck timetPh=Gn1.35×1043 s
Planck lengthlPh=ctPh4.05×1035 m
Planck massmPh=Hzkg/tPh5.46×108 kg
Planck temperatureTPh=HzK/tPh3.55×1032 K

Conclusion

This method makes the unit harmonization process explicit and operational:

  • Planck units are not physical boundaries, but the scales where SI units are rescaled to match nature’s ratios between equivalences.

  • The orbital period formula (and all physics) becomes a simple, dimensionless relationship, with only a single scaling factor (tPh) remaining to convert to SI seconds.

  • This is the true, practical meaning of “working at the Planck scale”-it’s not a breakdown, but a harmonization.

No comments:

Post a Comment

Progress on the campaign manager

You can see that you can build tactical maps automatically from the world map data.  You can place roads, streams, buildings. The framework ...