So, I found something interesting, I was puttering around the inside of a blackhole and realized that the natural radius/ ( 2 * natural mass ) is exactly non reduced Planck time squared. Imagine my surprise!
t_P^2, non reduced: 1.826241629811e-86 s^2
r_n/(m_n*2): 1.826241629811e-86 s^2
What this means is that
t_P^2 = r_n/(2 * m_n)
we can just calculate the radius by
r_n = 2 * m_n * t_P^2
So, keep this in mind when doing renovations in your black hole.
r_n/ t_P = 2 * m_n * t_P
becomes
r_planck = 2 * m_planck dimensionless.
This is the unit scaling that is always happening in this formula, from the scaling inside the units and what is encoded into the G_SI value and units.
It has this definition.
G_SI = non reduced t_P^2 * c^3 / Hz_kg
The Hz_kg is the ratio between mass and frequency in SI units of measurement m/f. To the universe m=f and L=T, but we humans scale the kg, meter, and second wildly different than that. You can find Hz_kg = h/c^2 and so we can define h = Hz_kg c^2.
I calculated a black hole and am exploring the escape velocity formula under different unit scaling that is encoded into G and the constants.
python escape.py
--- Input SI Values ---
M_SI (Mass in kg): 2.019886382250e+31
r_SI (Radius in m): 3.000000000000e+04
----------------------------------------------------------------------
--- Fundamental and Derived Constants (SI) ---
G_SI (Gravitational Constant): 6.674300000000e-11 m^3 kg^-1 s^-2
c_SI (Speed of Light): 2.997924580000e+08 m s^-1
h_SI (Planck Constant): 6.626070150000e-34 J s
Hz_kg (Mass/Frequency Ratio): 7.372497323813e-51 kg s (or kg/Hz)
G_n (Natural Grav. Constant): 1.826241629811e-86 s^2
----------------------------------------------------------------------
--- Standard Escape Velocity (SI) ---
v_e_SI^2: 8.987551787368e+16 m^2 s^-2
v_e_SI (Escape Velocity): 2.997924580000e+08 m s^-1
----------------------------------------------------------------------
--- Naturalized Quantities ---
m_n (Natural Mass): 2.739758718835e+81 s^-1 (or Hz)
r_n (Natural Radius): 1.000692285594e-04 s
----------------------------------------------------------------------
--- Naturalized Quantities time scaled by t_P ---
m_n (Natural Mass * t_P): 3.702469050733e+38 dimensionless
r_n (t_P / Natural Radius): 1.350450181078e-39 dimensionless
G_n * m_n / r_n 5.000000000000e-01 dimensionless
----------------------------------------------------------------------
--- Beta Calculation (Dimensionless) ---
Numerator (2 * G_n * m_n): 1.000692285594e-04 s
β^2 (Dimensionless Ratio^2): 1.000000000000e+00
β (Dimensionless Ratio): 1.000000000000e+00
----------------------------------------------------------------------
--- Verification ---
v_e_SI (from SI formula): 2.997924580000e+08 m s^-1
v_e_from_beta (β * c_SI): 2.997924580000e+08 m s^-1
Absolute difference: 5.960464477539e-08
Verification successful: v_e_SI is very close to β * c_SI.
----------------------------------------------------------------------
--- Detailed breakdown of β² calculation ---
G_n: 1.826241629811e-86 s^2
m_n: 2.739758718835e+81 s^-1
r_n: 1.000692285594e-04 s
1/r_n: 9.993081933333e+03 s
m_n/r_n: 2.737863335488e+85 s^-2
r_n/m_n: 3.652483259621e-86 s^-2
r_n/(m_n*2): 1.826241629811e-86 s^2
m_planck (Natural Mass * t_P): 3.702469050733e+38 dimensionless planck mass
m_planck (2 * Natural Mass * t_P):7.404938101467e+38 dimensionless planck mass
r_planck (1/ t_P / Natural Radius)7.404938101467e+38 dimless planck length
r_planck (t_P / Natural Radius): 1.350450181078e-39 dimless planck length
(r_n/t_P)/(2 * m_n* t_P) 1.000000000000e+00 dimensionless
(G_n * m_n) / r_n: 5.000000000000e-01 dimensionless
2 * (G_n * m_n) / r_n (β²): 1.000000000000e+00
sqrt(2 * (G_n * m_n) / r_n) (β):1.000000000000e+00
(venv) $ cat escape.py
import math
# CODATA 2018 values for fundamental constants (full precision)
G_SI = 6.67430e-11 # Gravitational constant (m^3 kg^-1 s^-2)
c_SI = 299792458.0 # Speed of light (m s^-1)
h_SI = 6.62607015e-34 # Planck constant (J s or kg m^2 s^-1)
# --- Your Derived Scaling Constants ---
# Hz_kg: Mass-to-frequency ratio (kg/Hz or kg*s)
Hz_kg = h_SI / (c_SI**2)
# G_n: Naturalized gravitational constant (s^2)
# G_n = G_SI * Hz_kg / (c_SI**3)
# Let's calculate it step by step to see units clearly
# G_SI * Hz_kg has units (m^3 kg^-1 s^-2) * (kg s) = m^3 s^-1
# c_SI^3 has units m^3 s^-3
# So (G_SI * Hz_kg) / c_SI^3 has units (m^3 s^-1) / (m^3 s^-3) = s^2
G_n = (G_SI * Hz_kg) / (c_SI**3)
t_P = G_n**(1/2)
# --- Input SI Values ---
M_SI = 1.0 # Mass in kilograms
M_SI = 1/1.356392489652e+50/t_P # Mass in kilograms
M_SI = 2e31/9.901547025492e-01 # Mass in kilograms
r_SI = 1.0 # Radius in meters
r_SI = 3.335640951982e-09*t_P # Radius in meters
r_SI = 3e4 # Radius in meters
print("--- Input SI Values ---")
print(f"M_SI (Mass in kg): {M_SI:<25.12e}")
print(f"r_SI (Radius in m): {r_SI:<25.12e}")
print("-" * 70)
print("--- Fundamental and Derived Constants (SI) ---")
print(f"G_SI (Gravitational Constant): {G_SI:<25.12e} m^3 kg^-1 s^-2")
print(f"c_SI (Speed of Light): {c_SI:<25.12e} m s^-1")
print(f"h_SI (Planck Constant): {h_SI:<25.12e} J s")
print(f"Hz_kg (Mass/Frequency Ratio): {Hz_kg:<25.12e} kg s (or kg/Hz)")
print(f"G_n (Natural Grav. Constant): {G_n:<25.12e} s^2")
print("-" * 70)
# 1. Standard Escape Velocity Calculation (SI units)
# v_e = sqrt(2 * G_SI * M_SI / r_SI)
v_e_SI_squared = (2 * G_SI * M_SI) / r_SI
v_e_SI = math.sqrt(v_e_SI_squared)
print("--- Standard Escape Velocity (SI) ---")
print(f"v_e_SI^2: {v_e_SI_squared:<25.12e} m^2 s^-2")
print(f"v_e_SI (Escape Velocity): {v_e_SI:<25.12e} m s^-1")
print("-" * 70)
# 2. Convert SI Mass and Radius to Natural Forms
# m_n: Natural mass (Hz or s^-1)
m_n = M_SI / Hz_kg
# r_n: Natural radius (s)
r_n = r_SI / c_SI
print("--- Naturalized Quantities ---")
print(f"m_n (Natural Mass): {m_n:<25.12e} s^-1 (or Hz)")
print(f"r_n (Natural Radius): {r_n:<25.12e} s")
print("-" * 70)
print("--- Naturalized Quantities time scaled by t_P ---")
print(f"m_n (Natural Mass * t_P): {m_n* t_P:<25.12e} dimensionless")
print(f"r_n (t_P / Natural Radius): {t_P/r_n:<25.12e} dimensionless")
print(f" G_n * m_n / r_n {G_n * m_n / r_n:<25.12e} dimensionless")
print("-" * 70)
# 3. Calculate Beta (β) using Naturalized Quantities
# β^2 = 2 * G_n * m_n / r_n
beta_squared_numerator = 2 * G_n * m_n
beta_squared = beta_squared_numerator / r_n
beta = math.sqrt(beta_squared)
print("--- Beta Calculation (Dimensionless) ---")
print(f"Numerator (2 * G_n * m_n): {beta_squared_numerator:<25.12e} s") # G_n (s^2) * m_n (s^-1) = s
print(f"β^2 (Dimensionless Ratio^2): {beta_squared:<25.12e}")
print(f"β (Dimensionless Ratio): {beta:<25.12e}")
print("-" * 70)
# 4. Verify: v_e = β * c
v_e_from_beta = beta * c_SI
print("--- Verification ---")
print(f"v_e_SI (from SI formula): {v_e_SI:<25.12e} m s^-1")
print(f"v_e_from_beta (β * c_SI): {v_e_from_beta:<25.12e} m s^-1")
# Check for difference (due to potential floating point artifacts)
difference = abs(v_e_SI - v_e_from_beta)
print(f"Absolute difference: {difference:<25.12e}")
if math.isclose(v_e_SI, v_e_from_beta, rel_tol=1e-12): # Relative tolerance for float comparison
print("\nVerification successful: v_e_SI is very close to β * c_SI.")
else:
print("\nVerification shows a notable difference. Check calculations or precision.")
print("-" * 70)
print("\n--- Detailed breakdown of β² calculation ---")
# (G_n * m_n) / r_n
# Term1 = G_n * m_n (units s)
term1_Gn_mn = G_n * m_n
# Term2 = (G_n * m_n) / r_n (dimensionless)
term2_Gn_mn_div_rn = term1_Gn_mn / r_n
print(f"G_n: {G_n:<25.12e} s^2")
print(f"m_n: {m_n:<25.12e} s^-1")
print(f"r_n: {r_n:<25.12e} s")
print(f"1/r_n: {1/r_n:<25.12e} s")
print(f"m_n/r_n: {m_n/r_n:<25.12e} s^-2")
print(f"r_n/m_n: {r_n/m_n:<25.12e} s^-2")
print(f"r_n/(m_n*2): {r_n/(m_n*2):<25.12e} s^2")
print(f"m_planck (Natural Mass * t_P): {m_n* t_P:<25.12e} dimensionless planck mass")
print(f"m_planck (2 * Natural Mass * t_P): {2 * m_n* t_P:<25.12e} dimensionless planck mass")
print(f"r_planck (1/ t_P / Natural Radius) {1/(t_P/r_n):<25.12e} dimensionless planck length")
print(f"r_planck (t_P / Natural Radius): {t_P/r_n:<25.12e} dimensionless planck length")
print(f"(r_n/t_P)/(2 * m_n* t_P) {(r_n/t_P)/(2 * m_n* t_P) :<25.12e} dimensionless planck mass")
print(f"(G_n * m_n) / r_n: {term2_Gn_mn_div_rn:<25.12e} (dimensionless)")
print(f"2 * (G_n * m_n) / r_n (β²): {2 * term2_Gn_mn_div_rn:<25.12e}")
print(f"sqrt(2 * (G_n * m_n) / r_n) (β):{math.sqrt(2 * term2_Gn_mn_div_rn):<25.12e}")
No comments:
Post a Comment