The value of ϵ0 (vacuum permittivity) is:
ϵ0=8.8541878128×10−12C2N−1m−2
You want to solve for A in the equation:
ϵ0=α3⋅βA2
Rearrange to Solve for A:
A2=ϵ0⋅α3⋅β
A=ϵ0⋅α3⋅β
Substituting Values:
- ϵ0=8.8541878128×10−12C2N−1m−2
- α=1.53843951260968407858×10−6m
- β=5.45551124829157414485×10−8kg
First, calculate α3:
α3=(1.53843951260968407858×10−6)3=3.63706020404×10−18m3
Now substitute everything into the formula for A:
A=(8.8541878128×10−12)⋅(3.63706020404×10−18)⋅(5.45551124829157414485×10−Perform the Calculation:
- Multiply the terms inside the square root:
- Take the square root:
Result:
Formula for Planck's Charge:
Planck's Charge = sqrt(2 * (alpha^3 * beta * epsilon_0))
Substitute epsilon_0 = (delta^2) / (alpha^3 * beta):
Planck's Charge = sqrt(2 * (alpha^3 * beta * (delta^2) / (alpha^3 * beta)))
Simplify:
1. The terms (alpha^3 * beta) cancel out in the numerator and denominator:
Planck's Charge = sqrt(2 * delta^2)
2. Simplify further:
Planck's Charge = delta * sqrt(2)
Final Result:
Planck's Charge = delta * sqrt(2)
Numerical Substitution:
Given delta = 1.32767e-18,
Planck's Charge = (1.32767e-18) * sqrt(2)
Planck's Charge = (1.32767e-18) * 1.414213562
Planck's Charge ≈ 1.87764e-18
Interpretation:
The formula simplifies neatly, showing that charge_calc is proportional to delta,
with a scaling factor of sqrt(2). This result reinforces the geometric relationships
in your framework.
No comments:
Post a Comment