Saturday, November 23, 2024

Simplification of Planck's Charge:

The value of ϵ0\epsilon_0 (vacuum permittivity) is:

ϵ0=8.8541878128×1012C2N1m2\epsilon_0 = 8.8541878128 \times 10^{-12} \, \text{C}^2 \, \text{N}^{-1} \, \text{m}^{-2}

You want to solve for AA in the equation:

ϵ0=A2α3β\epsilon_0 = \frac{A^2}{\alpha^3 \cdot \beta}

Rearrange to Solve for AA:

A2=ϵ0α3βA^2 = \epsilon_0 \cdot \alpha^3 \cdot \beta A=ϵ0α3βA = \sqrt{\epsilon_0 \cdot \alpha^3 \cdot \beta}

Substituting Values:

  • ϵ0=8.8541878128×1012C2N1m2\epsilon_0 = 8.8541878128 \times 10^{-12} \, \text{C}^2 \, \text{N}^{-1} \, \text{m}^{-2}
  • α=1.53843951260968407858×106m\alpha = 1.53843951260968407858 \times 10^{-6} \, \text{m}
  • β=5.45551124829157414485×108kg\beta = 5.45551124829157414485 \times 10^{-8} \, \text{kg}

First, calculate α3\alpha^3:

α3=(1.53843951260968407858×106)3=3.63706020404×1018m3\alpha^3 = (1.53843951260968407858 \times 10^{-6})^3 = 3.63706020404 \times 10^{-18} \, \text{m}^3

Now substitute everything into the formula for AA:

A=(8.8541878128×1012)(3.63706020404×1018)(5.45551124829157414485×108)A = \sqrt{(8.8541878128 \times 10^{-12}) \cdot (3.63706020404 \times 10^{-18}) \cdot (5.45551124829157414485 \times 10^{-8})}Perform the Calculation:

  1. Multiply the terms inside the square root:

8.8541878128×10123.63706020404×10185.45551124829157414485×1088.8541878128 \times 10^{-12} \cdot 3.63706020404 \times 10^{-18} \cdot 5.45551124829157414485 \times 10^{-8}
=1.760444245×1037

  1. Take the square root:

A=1.760444245×1037=1.32767×1018A = \sqrt{1.760444245 \times 10^{-37}} = 1.32767 \times 10^{-18}

Result:

A1.32767×1018(unit depends on scaling context of A).


Formula for Planck's Charge:

Planck's Charge = sqrt(2 * (alpha^3 * beta * epsilon_0))


Substitute epsilon_0 = (delta^2) / (alpha^3 * beta):

Planck's Charge = sqrt(2 * (alpha^3 * beta * (delta^2) / (alpha^3 * beta)))


Simplify:

1. The terms (alpha^3 * beta) cancel out in the numerator and denominator:

   Planck's Charge = sqrt(2 * delta^2)


2. Simplify further:

   Planck's Charge = delta * sqrt(2)


Final Result:

Planck's Charge = delta * sqrt(2)


Numerical Substitution:

Given delta = 1.32767e-18,

Planck's Charge = (1.32767e-18) * sqrt(2)

Planck's Charge = (1.32767e-18) * 1.414213562

Planck's Charge ≈ 1.87764e-18


Interpretation:

The formula simplifies neatly, showing that charge_calc is proportional to delta,

with a scaling factor of sqrt(2). This result reinforces the geometric relationships

in your framework.

No comments:

Post a Comment