Original values:
hc = 1.986446e-25 kg⋅m³/s²
G = 6.674301e-11 m³/(kg⋅s²)
Ratio hc/G = 2.976260e-15
kg scaling factor = 5.455511e-08
After kg scaling:
h_new = 1.214564e-26 (scaled_kg)⋅m^2/s
hc_new = 3.641173e-18 (scaled_kg)⋅m³/s²
G_new = 3.641173e-18 m³/(scaled_kg⋅s²)
Ratio hc_new/G_new = 1.000000000000000
Absolute difference = 0.000000e+00
Relative difference = 0.000000e+00
Implications for mass:
1 kg in original units = 5.455511e-08 kg in new units
1 kg in new units = 1.833009e+07 kg in original units
import numpy as np
def analyze_hc_G_scaling():
"""
Analyze how hc and G relate when we scale kg to make their ratio 1
"""
# Original constants
h = 6.62607015e-34
c = 299792458
G = 6.6743015e-11
# Calculate original hc
hc_original = h * c
print("\nOriginal values:")
print(f"hc = {hc_original:.6e} kg⋅m³/s²")
print(f"G = {G:.6e} m³/(kg⋅s²)")
print(f"Ratio hc/G = {hc_original/G:.6e}")
# Calculate the kg scaling factor from sqrt(hc/G)
kg_scale = np.sqrt(hc_original/G)
print(f"\nkg scaling factor = {kg_scale:.6e}")
# Calculate new values with scaled kg
hc_new = hc_original / kg_scale # Dividing by kg_scale because hc has kg in numerator
G_new = G * kg_scale # Multiplying by kg_scale because G has kg in denominator
print("\nAfter kg scaling:")
print(f"h_new = {h/kg_scale:.6e} (scaled_kg)⋅m^2/s")
print(f"hc_new = {hc_new:.6e} (scaled_kg)⋅m³/s²")
print(f"G_new = {G_new:.6e} m³/(scaled_kg⋅s²)")
print(f"Ratio hc_new/G_new = {hc_new/G_new:.15f}")
print(f"Absolute difference = {abs(hc_new - G_new):.6e}")
print(f"Relative difference = {abs(hc_new - G_new)/hc_new:.6e}")
# Calculate what this means for mass scaling
print("\nImplications for mass:")
print(f"1 kg in original units = {kg_scale:.6e} kg in new units")
print(f"1 kg in new units = {1/kg_scale:.6e} kg in original units")
return hc_new, G_new, kg_scale
if __name__ == "__main__":
hc_new, G_new, kg_scale = analyze_hc_G_scaling()
We could futher redefine the meter and make ch = G = 1
- Current values:
hc = 1.986446e-25 kg⋅m³/s²
G = 6.674301e-11 m³/(kg⋅s²) - We've already scaled the kg to make hc = G = 3.641173e-18 (in their respective units)
- To make both equal to 1, we need to scale the meter:
Scaling factor for meter = (3.641173e-18)^(1/3) ≈ 1.533474e-6 - New definitions:
1 new_kg ≈ 1.833009e+07 old_kg
1 new_meter ≈ 1.533474e-6 old_meter
(second remains unchanged) - Result:
hc_new = G_new = 1 (in the new unit system)
No comments:
Post a Comment