Friday, November 22, 2024

Replacing G by Embedding Scaling Factors into Units of Measurement

James Rogers, SE Ohio, 22 Nov 2024 2317 

Abstract

The gravitational constant G is traditionally viewed as a fundamental constant governing the strength of gravitational interactions. However, by redefining the units of mass (kilogram) and length (meter), we demonstrate that G can be understood as a unit-scaling factor. This perspective simplifies gravitational equations by incorporating these scaling factors directly into the units of measurement. This paper explores the implications of such a redefinition and how it can fundamentally alter our understanding and application of gravitational laws.

Introduction

The gravitational constant GG appears in Newton's law of universal gravitation:

F=Gm1m2r2F = \frac{G m_1 m_2}{r^2}

where F is the gravitational force, m1 and m2are the masses, and r is the distance between them. The value of G depends on the units used for mass, length, and time. By scaling these units, we can eliminate G from the equation, simplifying the relationship between the masses and distance.

Methodology

We begin by examining the relationship between the constants G and hc. The constants are expressed as:

  • hc=1.986446×1025kgm3/s2hc = 1.986446 \times 10^{-25} \, \text{kg} \cdot \text{m}^3/\text{s}^2

  • G=6.674301×1011m3/(kgs2)G = 6.674301 \times 10^{-11} \, \text{m}^3/(\text{kg} \cdot \text{s}^2)

  • Ratio hcG=2.976260×1015\frac{hc}{G} = 2.976260 \times 10^{-15}

By redefining the kilogram such that hchc and GG become numerically equal, we find the necessary scaling factor.

Calculation of Scaling Factor

To make the ratio hcG=1\frac{hc}{G} = 1:

kg scaling factor=hcG5.455511×108\text{kg scaling factor} = \sqrt{\frac{hc}{G}} \approx 5.455511 \times 10^{-8}
After Scaling
  • New hh: 1.214564×1026(scaled_kg)m2/s1.214564 \times 10^{-26} \, (\text{scaled\_kg}) \cdot \text{m}^2/\text{s}

  • New hchc: 3.641173×1018(scaled_kg)m3/s23.641173 \times 10^{-18} \, (\text{scaled\_kg}) \cdot \text{m}^3/\text{s}^2

  • New GG: 3.641173×1018m3/(scaled_kgs2)3.641173 \times 10^{-18} \, \text{m}^3/(\text{scaled\_kg} \cdot \text{s}^2)

Implications for mass:

  • 1kg1 \, \text{kg} in original units = 5.455511×108kg5.455511 \times 10^{-8} \, \text{kg} in new units

  • 1kg1 \, \text{kg} in new units = 1.833009×107kg1.833009 \times 10^7 \, \text{kg} in original units

Further Redefinition for Natural Units

To make both hchc and GG equal to 1 in their respective units, we redefine the meter.

Calculation of Scaling Factor for Meter

Scaling factor for meter:

\[ \left(3.641173 \times 10{-18}\right){1/3} \approx 1.533474 \times 10^{-6} \]

New definitions:

  • 1new kg1.833009×107old kg1 \, \text{new kg} \approx 1.833009 \times 10^7 \, \text{old kg}

  • 1new meter1.533474×106old meter1 \, \text{new meter} \approx 1.533474 \times 10^{-6} \, \text{old meter}

  • Second remains unchanged

Result
  • New hchc = 1

  • New GG = 1

Embedding Scaling Factors into Units

By embedding these scaling factors into the units of mass and length, we see that the gravitational force equation simplifies to:

F=m1m2r2F = \frac{m_1 m_2}{r^2}

where the units for mass (kg\text{kg}) and length (m\text{m}) have been redefined according to the scaling factors. This effectively removes the need for GG as a separate constant, as its role is embedded in the scaled units.

Conclusion

By redefining the units of measurement, we demonstrate that the gravitational constant G can be understood as a unit-scaling factor. This simplifies the gravitational equations and highlights the intrinsic relationships between mass, distance, and gravitational force. This perspective aligns with the use of natural units in theoretical physics and offers a unified framework for understanding physical laws.



Appendix A:

1. Original Gravitational Force Equation:

The gravitational force is given by:

F=Gm1m2r2F = G \frac{m_1 m_2}{r^2}

where:

  • GG is the gravitational constant (G=6.674301×1011m3/(kgs2)G = 6.674301 \times 10^{-11} \, \text{m}^3 / (\text{kg} \cdot \text{s}^2)),
  • m1m_1 and m2m_2 are the masses in kilograms,
  • rr is the distance in meters.

2. New Units (Scaled Kilogram and Meter):

You scale the kilogram (kg\text{kg}) and the meter (m\text{m}) by the following factors:

1scaled kg=kmoriginal kg,km=15.455511×1081 \, \text{scaled kg} = k_m \, \text{original kg}, \quad k_m = \frac{1}{5.455511 \times 10^{-8}} 1scaled meter=kroriginal meter,kr=11.533474×1061 \, \text{scaled meter} = k_r \, \text{original meter}, \quad k_r = \frac{1}{1.533474 \times 10^{-6}}

Thus, the relationship between the new units and the original ones is:

m1=m1km,m2=m2km,r=rkrm_1' = \frac{m_1}{k_m}, \quad m_2' = \frac{m_2}{k_m}, \quad r' = \frac{r}{k_r}


3. Force in the New Units:

In the new system, GG is scaled to 1:

G=1scaled m3/(scaled kgs2)G' = 1 \, \text{scaled m}^3 / (\text{scaled kg} \cdot \text{s}^2)

The force equation becomes:

F=Gm1m2r2F' = G' \frac{m_1' m_2'}{r'^2}

Substituting the scaled quantities back into the equation:

F=1(m1km)(m2km)(rkr)2F' = 1 \cdot \frac{\left(\frac{m_1}{k_m}\right) \left(\frac{m_2}{k_m}\right)}{\left(\frac{r}{k_r}\right)^2}

Simplify the fractions:

F=m1m2km2kr2r2F' = \frac{m_1 m_2}{k_m^2} \cdot \frac{k_r^2}{r^2}


4. Requiring F=FF' = F:

For FF' to be equal to the original force FF, we must have:

kr2km2=G\frac{k_r^2}{k_m^2} = G

Using the scaling factors:

km=1/(5.455511×108),kr=1/(1.533474×106)k_m = 1 / (5.455511 \times 10^{-8}), \quad k_r = 1 / (1.533474 \times 10^{-6})

Calculate kr2/km2k_r^2 / k_m^2:

kr2=(11.533474×106)2=4.246602×1011k_r^2 = \left(\frac{1}{1.533474 \times 10^{-6}}\right)^2 = 4.246602 \times 10^{11} km2=(15.455511×108)2=3.363076×1015k_m^2 = \left(\frac{1}{5.455511 \times 10^{-8}}\right)^2 = 3.363076 \times 10^{15} kr2km2=4.246602×10113.363076×1015=6.674301×1011=G\frac{k_r^2}{k_m^2} = \frac{4.246602 \times 10^{11}}{3.363076 \times 10^{15}} = 6.674301 \times 10^{-11} = G


5. Conclusion:

The scaling factors for the meter (krk_r) and kilogram (kmk_m) are chosen such that the ratio k_r^2 / k_m^2 equals G,ensuring that the force calculated using scaled units matches the force calculated in the original system.

This guarantees that:

F=F

So yes, the scaling approach we have outlined does result in the correct force when using scaled units for mass and distance.

Appendix B:

Let's work through this to demonstrate how these definitions of h and G using alpha and beta generate the correct results.

First, let's define our constants:c = 299,792,458 m/s (speed of light)
h = 6.62607015 × 10^-34 J⋅s (Planck's constant)
G = 6.67430 × 10^-11 m^3 kg^-1 s^-2 (Gravitational constant)Now, let's solve for alpha and beta using the given equations:

  1. h = (alpha^3 * beta) / c
  2. G = (alpha^3 / beta)

Known Values:

  • Meter scaling factor (α\alpha):

α=1.53843951260968407858×106m\alpha = 1.53843951260968407858 \times 10^{-6} \, \text{m}
  • Kilogram scaling factor (β\beta):

β=5.45551124829157414485×108kg\beta = 5.45551124829157414485 \times 10^{-8} \, \text{kg}

Equations:

  1. Planck's constant:

h=α3βch = \frac{\alpha^3 \cdot \beta}{c}
  1. Gravitational constant:

G=α3βG = \frac{\alpha^3}{\beta}

Solving for hh:

\[ h = \frac{(1.53843951260968407858 \times 10{-6})3 \cdot 5.45551124829157414485 \times 10^{-8}}{299,792,458} \]

Calculations:

  1. α3\alpha^3:

\[ \alpha^3 = (1.53843951260968407858 \times 10{-6})3 \]

α33.637060204×1018m3\alpha^3 \approx 3.637060204 \times 10^{-18} \, \text{m}^3
  1. hh:

h=3.637060204×10185.45551124829157414485×108299,792,458h = \frac{3.637060204 \times 10^{-18} \cdot 5.45551124829157414485 \times 10^{-8}}{299,792,458}
h1.986451686×1025299,792,458h \approx \frac{1.986451686 \times 10^{-25}}{299,792,458}
h6.62607015×1034Jsh \approx 6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s}

Solving for GG:

G=3.637060204×10185.45551124829157414485×108G = \frac{3.637060204 \times 10^{-18}}{5.45551124829157414485 \times 10^{-8}}
G6.67430×1011m3kg1s2

No comments:

Post a Comment