Original Thermal de Broglie Wavelength:
h/(sqrt(T)*sqrt(m)*sqrt(2*pi*k))
Simplified Thermal de Broglie Wavelength:
c/(sqrt(2*pi)*sqrt(f_T)*sqrt(f_m))
Original Stephan-Boltzmann Formula:
2*pi**5*k**4/(15*c**2*h**3)
Simplified Stephan-Boltzmann Formula:
2*pi**5*Hz_kg*K_Hz**4/15
Original Planck law Formula:
2*f**3*h/(c**2*(e**(f*h/(T*k)) - 1))
Simplified Planck law Formula:
2*Hz_kg*f**3/(e**(f/(K_Hz*T)) - 1)
from sympy import symbols, sqrt, pi, simplify,Mul
# Define symbols
m, f_m, f_T, T, c, f, e = symbols("m f_m f_T T c f e", positive=True)
h, k = symbols("h k") # Planck's constant and Boltzmann's constant
# Define modular unit scaling factors
Hz_kg, kg_J = symbols("Hz_kg kg_J", positive=True)
K_Hz = symbols("K_Hz", positive=True)
two_pi = symbols("2*pi")
#two_pi = Mul(2,pi,evaluate=False)
# Define original thermal de Broglie wavelength formula
λ_th = h / sqrt(two_pi * m * T * k)
# Substitute h and k with modular scaling factors
λ_th_simplified = λ_th.subs({h: Hz_kg * kg_J, k: K_Hz * Hz_kg * kg_J, m:f_m * Hz_kg, T:f_T/K_Hz, kg_J: c**2 })
# Further simplification
λ_th_simplified = simplify(λ_th_simplified)
λ_th_simplified = simplify(λ_th_simplified)
# Print result
print()
print("Original Thermal de Broglie Wavelength:")
print(λ_th)
print("Simplified Thermal de Broglie Wavelength:")
print(λ_th_simplified)
print()
σ = 2 * pi**5 * k**4 / (15 * h**3 * c**2)
σ_simplified = σ.subs({h: Hz_kg * c**2, k: K_Hz * Hz_kg * c**2 })
σ_simplified = simplify(σ_simplified)
print("Original Stephan-Boltzmann Formula:")
print(σ)
print("Simplified Stephan-Boltzmann Formula:")
print(σ_simplified)
print()
planck_law = ((2 * h * f**3)/c**2)*(1/(e**((h*f)/(k * T))-1))
planck_law_simplified = planck_law.subs({h: Hz_kg * c**2, k: K_Hz * Hz_kg * c**2 })
planck_law_simplified = simplify(planck_law_simplified)
print("Original Planck law Formula:")
print(planck_law)
print("Simplified Planck law Formula:")
print(planck_law_simplified)
print()
No comments:
Post a Comment