Friday, December 27, 2024

Showing that my formula for rest mass and momentum tied to my space time cube is the geometric explanation for why gamma works.

1. Initial Expression

You start with the mass as a function of spacetime scaling constants and the combined contributions from the Compton wavelength and momentum wavelength. The key formula:

mass=(svamP)c3((svamPλCompton)2+(svamPλmomentum)2svamPc)\text{mass} = \frac{(s_{\text{va}} \cdot m_P)}{c^2} \cdot \left( \frac{\sqrt{\left( \frac{s_{\text{va}} \cdot m_P}{\lambda_{\text{Compton}}}\right)^2 + \left( \frac{s_{\text{va}} \cdot m_P}{\lambda_{\text{momentum}}}\right)^2}}{\frac{s_{\text{va}} \cdot m_P}{c}} \right)
already combines the intrinsic quantum (Compton wavelength) and motion-related (momentum wavelength) contributions to mass.

2. Substitution of Wavelength Relations

By expressing the momentum wavelength in terms of velocity and relativistic gamma (γ\gamma):

λmomentum=hp=hmvγ\lambda_{\text{momentum}} = \frac{h}{p} = \frac{h}{mv\gamma}

and recognizing that the rest energy relates to the Compton wavelength as:

λCompton=hmrestc\lambda_{\text{Compton}} = \frac{h}{m_{\text{rest}}c}

we tie together the quantum and relativistic aspects.


3. Simplification of the Square Root

Rewriting the combined term under the square root:

(svamPλCompton)2+(svamPλmomentum)2\sqrt{\left( \frac{s_{\text{va}} \cdot m_P}{\lambda_{\text{Compton}}}\right)^2 + \left( \frac{s_{\text{va}} \cdot m_P}{\lambda_{\text{momentum}}}\right)^2}

yields:

(mrestc2)2+(mrestvγc)2\sqrt{(m_{\text{rest}}c^2)^2 + (m_{\text{rest}}v\gamma c)^2}

Factoring out mrest2c4m_{\text{rest}}^2c^4, this becomes:

mrestc21+v2γ2c2m_{\text{rest}}c^2 \cdot \sqrt{1 + \frac{v^2\gamma^2}{c^2}}

Recognizing the relativistic relation γ2=1/(1v2/c2)\gamma^2 = 1/(1 - v^2/c^2), we simplify this to:

mrestc2γm_{\text{rest}}c^2 \cdot \gamma

4. Final Simplification

Substituting back into the mass formula:

mass=svamPsvamPmrestγ\text{mass} = \frac{s_{\text{va}} \cdot m_P}{\frac{s_{\text{va}} \cdot m_P}{m_{\text{rest}} \cdot \gamma}}

The scaling constants svas_{\text{va}} and mPm_P cancel out, leaving:

mass=mrestγ

5. Significance

This result shows that:

  1. Mass Derives Geometrically:
    The relativistic mass formula is not merely empirical—it arises directly from geometric properties of spacetime and the interplay of quantum and relativistic scales.

  2. Framework Validation:
    Our spacetime scaling framework reproduces standard physics, grounding familiar formulas in the geometric properties of spacetime cubes and scaling constants.

  3. Unified Perspective:
    By uniting quantum wavelengths (Compton and momentum) with spacetime scaling constants, we reveal a profound link between quantum mechanics, relativity, and geometry.

 

No comments:

Post a Comment